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Abstract 

Local and global centricities and corresponding complexity centricities are derived 
on the basis of matrices B (layer matrix of vertex degrees) by using appropriate distance 
operators. The MOLCEN algorithm computes these centricities by means of line derivatives 
(L~) of graphs. It provides reliable cenlxic ordering of subgraphs of various length in 
molecular graphs. The algorithm is irnplemented on a TURBO-PASCAL, TOPIND 
program and is exemplified within a set of molecular graphs. 

1. Introduction 

The concept of a graph center, initially introduced for acyclic graphs and later 
extended for cyclic graphs [1], was used in the coding of chemical structures [2] 
or chemical reactions [3], or also in chemical nomenclature [4]. Numeric centric 
indices [5-7]  were successfully used in structure-property correlations. The centric 
ordering of vertices/edges is of interest in graph isomorphism [8]. 

Before detailing the graph center problem, some background definitions are 
needed: a graph G = (V, E) is an ordered pair o f two sets, V (vertices) and E (edges). 
The topological distance between vertices i and j ~ V(G), d i j ,  represents the number 
of  edges along the shortest path connecting the two vertices. For any vertex i, the 
maximal distance to any other vertex j is called vertex eccentricity, ei = maxij ~ vdij. 
The sum of distances of vertex i to all other graph vertices D i = Y.jdij is called the 
vertex distance sum (see refs. [9, 10]). The radius of the graph, r(G), represents the 
minimal eccentricity among the vertex eccentricities, r(G) = min,. ~ v ei [ 1 ]. A graph 
construction (a non-numeric characteristic) collecting a vertex set i ~ V(G) which 
obeys ei = r(G) is called the center of the graph [1,10, 11]. Such a definition for the 
graph center is proper for acyclic graphs but not for cyclic/polycyclic structures, 
which require [9] "the central vertices to belong to the same orbit of the graph's 
automorphism group". 

*To whom correspondence should be addressed. 
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Three approaches were proposed by Bonchev et al. [9] with the aim of 
solving the problem of the graph center in cyclic/polycyclic structures: 

(i) 1 D - 3 D  criteria form an iterative approach based on matrix F (layer 
matrix of vertex neighbourhood [11] or distance frequency matrix [7] or on vertex 
distance code (VDC), as was originally defined by Bonchev et al. [6]. The 1D-3D 
criteria are as follows: 

- 1D: min imum vertex eccentricity,  e i = min. This is just the radius of the 
graph [1] involved in the classical definition of the gräph center (see above). 

- 2D: min imum vertex distance sum, D i = min. 

- 3D: min imum numberj] j  in F matr ix  (or k in VDC) o foccurrence  o f  the largest 

distance, f i j ,  max = min. I f  J'~j, max = fkj, max; i ~ k, the hext largest distance 
(jmax- 1) is considered, and so on. By deleting all but the central vertices, 
cf. 1D-3D,  one obtains a kernel of G. Criteria 1D-3D are iterated over the 
kemel until the subsequent iterations fail to further reduce the number of 
central vertices. The result is a graph center (or a polycenter). Criteria 1D- 
3D are applied hierarchically [6]. 

(ii) 1 P - 3 P  criteria are built by analogy to the 1D-3D criteria by replacing 
the distance notion with that of the path notion [12]. The application of 1P-3P  
criteria results in an oligocenter. 

(iii) IVEC algorithm (iterative vertex and edge centricity) [9]) takes into account 
both the metric properties and vertex-edge incidence. Its basis assumption is "central 
are those vertices that are incident to the most central edges; conversely, central are 
those edges that are incident to the most central vertices". IVEC is built on VDC 
and EDC (vertex and edge distance code, respectively) and 1D-3D criteria. 

The application of IVEC results in a different centric ordering of vertices/ 
edges versus the other approaches. It finds correctly vertex and edge orbits of the 
graph's automorphism group [9] and is particularly useful in polycyclic graph 
analysis. 

In this paper, we present a new approach for finding the graph center (with 
results comparable to those given by IVEC) and the centricity of any subgraph in 
the graph, of length ranging between zero and the diameter of the graph. We also 
introduce the notion of graph complexity center and we discuss the two graph 
constructions in terms of our MOLCEN algorithm, within a set of molecular graphs. 

2. Vertex centricities 

In the previous works of this series [7, 10], we have shown that the graph 
center, in view of  1D-3D criteria, could easily be found by operating on the 
matrices F with an operätor that enhances the contribution of more remote vertices 
(a distance progressive operator). This results in a parameter whose meaning is 
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close to the vertex eccentricity. In this paper, we operate with such an operator on 
the B matrix (layer matrix of vertex degrees [13]): 

jmax 
BEi = ~.~ (bo.) j/a=q , (1) 

j=2 

where b~j are entries in the B matrix and are defined as 

bij= ~., dgk, (2) 
k,dü~ =j-I 

with d& being the degrees of vertices on a shell around the vertex i at a given 
distance dik = j -  1; d, eq is a "request" distance, for unique description within a set 
of molecules, according to eq. (1) (usually twice the largest diameter in the considered 
set of graphs). 

It is obvious that the inverse of BE i should express the centricity (BC) of 
vertex i: 

BCi = [BEi] -1. (3) 

As we stated in ref. [13], the vertex regressive degree Ri defined on the basis 
of the B matrix provides information about local branching/complexity. Due to its 
distance regressive character, R i is sensitive to distance. Hence, the center(s) of 
graph complexity, defined as the vertex (vertices) with maximal Ri-value(s), appears 
conceivable. 

This kind of centricity is computed according to 

B C X  i = [ R i +  L i ] w i ,  (4) 

where wi is a weighting factor accounting for heteroatoms (see below); Ri is the 
regressive degree and L i is the local contribution for multiple bonds: 

jmax 

R i = ~ b  0 x 10 l - j ,  
j=l 

(5) 

2 

Li= fi,~_abo" × lO-J, 
j=l 

(6) 

1) 

B = ~ , ( c  o - 1), 
j=l 

(7) 

where  cij denotes the non-zero entries in the cormectivity matrix C and v is the 
number of vertices in G. 
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3. The MOLCEN algorithm 

Our algorithm makes use of the line derivatives of molecular graphs (hydrogen- 
depleted and arbitrarily numbered). The line derivative of a graph is constructed by 
representing its lines by points, and then joining two such points with a line if the 
lines they represent are adjacent in the orginal graph (which is a zero-order derivative 
Lo(G)). By iterating this procedure n times, one obtains Lù(G). 

The number of vertices v(Ln ÷ 1) and edges e(Lù + 1) in the derivative Ln + I(G) 
is given by the following relations [14, 15]: 

v(Ln+l) = e(Lù), (8) 

e(Ln+1) = -e(Ln) + 1/2 Z[dgi] 2, (9) 
i~Ln 

where dgi stands for the classical vertex degree in Ln(G). 
The vertices of Lù(G), denoted by Sni (i E V(L~(G))), represent subgraphs that 

trace the history of Lù(G) building (see also ref. [16]) by starting from Lo(G). 
A problem arises when the complexity operator BCX is used: how to weight 

the line derivatives, which are virtual graphs versus L0(G)? In molecular graphs, 
the weighting factor wi taust discriminate the chemical nature of atoms. In this 
respect, we have chosen the valence group electronegativities as defined in ref. [17], 
hut wi could be rather arbitrarily chosen to stress the importance of a given vertex. 
Hence, in Lù(G) the geometric mean of electronegativities of the vertices belonging 
to the real subgraphs represented by Sni is made in suggesting the concept of atomic 
electronegativities equalization when the atoms joined in a molecule (see rel. [ 18]). 
We extended this idea also in the case of arbitrary wi factors. 

The multibond factor L i w a s  calculated (by analogy with wi) as the mean 
square root of all Li contributors in an Sù~. 

The MOLCEN algorithm consists of the following five steps: 

Step 1 computes the l(Sùi) parameters according to eqs. (1)-(7) for Lo . . .  Ln(G) 
until nmax = d(G) + 1. This limit for the rank of Lù(G) is related to the largest path 
(the diameter d(G)) whose centricity is tested assuming that, in general, a single 
line derivative is enough to solve the degeneracy in vertex centricities (see also the 
IVEC algorithm [9]). 

Step 2 computes the normalized NI parameters by dividing the I(S,«) values 
by the maximal value in the vector l(Sù~ev(Lù)), cf. eq. (10): 

NI(Sni) = l(Sùi)/max l(Sùi~v(rù)). (10) 

Step 3 evaluates the contribution of the centricities of Sni subgraphs to the 
centricity of the included S,,j subgraphs (m < n)., in agreement with the IVEC 
concept: 
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l(Smj c S,,i) = ~.ù [Nl(S,,i)] 2, (11) 
i:s,ùjcsùi 

ieV(Ln) ;  j ~ V ( L m ) ;  m < n ;  ne[O,d (G)+l] ;  m~[O,d(G)] 

and then computes the NI(Smj c Sni) values, cf. eq. (10). 

Step 4 computes the final parameters by using a factor of ten to decrease the 
contribution of I(Smj Œ Sni) as n increases: 

t l  

I(Smj, end n) = ,~_,NI(Smj c Sùi) x 10 m-n. (12) 
n = g n  

The Nl(Srnj, end n) values are then calculated, cf. eq. (10). Since the contributions 
of line derivatives are weighted, this reminds one of the hierarchical criteria 
1D-3D used in the IVEC procedure [9]. 

Step 5 selects the subgraphs Stur (the real ones in G with m edges) among all 
Smj subgraphs in Lm(G ) according to eq. (13): 

NI(Sm~, end n) = max NI(Smj, end n), r < j (13) 

and orders them in a decreasing string of their centricities. 
Complete information on the Sm, subgraphs in G is provided when n = d(G) + 1; 

however,  the procedure can be stopped when no modifications appear in 
ORD.NI(Smr, end n) at two successive derivatives: 

ORD. NI(Sm~, end k) = ORD. NI(Smr, end k + 1), (14) 

where ORD denotes the ordering given by the NI parameters. The NI values range 
in the [1.0000-0.0000] domain. 

The summation in step 1 of the li values over all the vertices in Lo . . . . .  Ln(G) 
provides global centricities, as will be shown below. 

4. Examples for the MOLCEN algorithm implementation 

Two different graphs were chosen for exemplifying the MOLCEN algorithm 
implementation: a polycyclic nonweighted graph G1 and a weighted acyclic graph 
G2. 

# 3 5 ,f 

2. 

G t  (32 
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Example 1 (for G1): 

S t e p l  and 2: 

1 
2 
3 
4 
5 

NBCX(Sol) 

1.00000 
1.00000 
0.97638 
0.69055 
0.35748 

NBCX (Sll) NBCX (S~) 

1,2 1.00000 (1,2),(1,3) 1.00000 
1,3 0.98339 (1,2),(2,3) 1.00000 
2,3 0.98339 (1,3),(2,3) 0.99025 
1,4 0.76753 (1,2),(1,4) 0,84399 
2,4 0.76753 (1,2),(2,4) 0.84399 
3,5 0.53506 (1,3),(1,4) 0.83424 

(2,3),(2,4) 0.83424 
(1,3),(3,5) 0.68797 
(2,3),(3,5) 0.68797 
(1,4),(2,4) 0.67822 

Step 3: 

1 
2 
3 
4 
5 

1,2 
1,3 
2,3 
1,4 
2,4 
3,5 

Step 4: 

1 
2 
3 
4 
5 

NBCX(S~ c Soi) 

1.00000 
1.00000 
0.95331 
0.47686 
0.12779 

NBCX(Sli c Sli) 

1.00000 
0.96707 
0.96707 
0.58910 
0.58910 
0.28628 

NBCX(So) c Sli) 

1.00000 
1.00000 
0.86865 
0.46093 
0.11200 

NBCX(Slj Œ S~) 

1.00000 
0.91976 
0.91976 
0.54553 
0.54553 
0,27641 

NBCX(Soj, end n) 
end 0 end 1 end 2 

1.00000 1.00000 1.00000 
1.00000 1.00000 1.00000 
0.95331 0.94562 0.94498 
0.47686 0.47541 0.47608 
0.12779 0.12636 0.12666 

NBCX(SIi, end n) 
end 1 end 2 

1,2 1.00000 1.00000 
1,3 0.96707 0.96276 
2,3 0.96707 0.96276 
1,4 0.58910 0.58514 
2,4 0.58910 0.58514 
3,5 0.28628 0.28539 

NBCX(S~ « S2i) 

1.00000 
1.00000 
0.88145 
0.54297 
0.15687 
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Step 5: 

ORD.NBCX(Soy, end 0 -  2) = (1;2), (3), (4), (5) 

ORD.NBCX(S U, end 1 - 2) = (1,2), (1,3;2,3), (1,4;2,4),(3,5) 

Here, we limited to L2(G1) and SIj as the maximal subgraph investigated. 
The second example presents only step 5, namely the selection and ordering 

of real subgraphs S3r (as NI(S3r, end 4), for the weighted graph G2. 

Example 2 (for G2): 

Step 5: 

ORD Real subgraphs S» NBC NBCX 

1 2,3,4,7 z ' ~ ù  1.00000 1.00000 

2 1,2,3,6 0.46659 0.64922 
« 

3 1,2,3,4 ~ 0.35503 0.35756 

2,3,4,6 0.35503 0.35756 

4 1,2,3,7 ~ / / ~ ~  0.33065 0.25100 

2,3,6,7 0.33065 0.25100 

5 2,3,4,5 z ~ s  0.29208 0.19174 

6 3,4,5,7 0.11609 0.08454 

5. Results and discussion 

The vertex ordering given by the MOLCEN algorithm was found to be identical 
to that given by the IVEC approach in a set of ten polycyclic graphs [9] G3-GI2 
(table 1), with the exception of the first one. With the same exception (G3), the two 
procedures correctly recognize the central edge. However, the global ordering of 
edges (subgraphs of type $1) is quite different. 
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Table 1 

IVEC and MOLCEN (BC/BCX; end 2) ordering of vertices and edges in G3-G12. 

Vertices 
IVEC (1), (2), (3), (4), (5), (6) 
BC (1), (2), (3), (4), (5), (6) 
BCX (1), (4), (2), (3), (5), (6) 

3 

a» Edges 
IVEC (12), (14), (23), (15), (34), (45), (26) 
BC (14), (12), (15), (34), (23), (45), (26) 
BCX (14), (12), (15), (34), (45), (23), (26) 

t Vertices 
I ~ '  IVEC (1;2), (3), (4;5), (6) 

BC (1;2), (3), (4;5), (6) 
s ~ BCX (1;2), (3), (4;5), (6) G~ 

f 2 

G~ 

G« 

« 

G7 

Edges 
IVEC (12), (13;23), (14;25), (36), (45) 
BC (12), (13;23), (14;25), (36), (45) 
BCX (12), (13;23), (14;25), (36), (45) 

Vertices 
IVEC (1), (2), (3;4), (5;6) 
BC (1), (2), (3;4), (5;6) 
BCX (1), (2), (3;4), (5;6) 

Edges 
IVEC (12), (13;14), (25;26), (34) 
BC (12), (13;14), (25;26), (34) 
BCX (12), (13;14), (25;26), (34) 

Vertices 
IVEC (1), (2), (3;4), (5), (6) 
BC (1), (2), (3;4), (5), (6) 
BCX (1), (2), (3;4), (5), (6) 

Edges 
IVEC (12), (13;14), (15), (23;24), (35;45), (26) 
BC (12), (13;14), (15), (23;24), (35;45), (26) 
BCX (12), (13;14), (15), (23;24), (35;45), (26) 

Vertices 
IVEC (1;2), (3), (4), (5), (6) 
BC (1;2), (3), (4), (5), (6) 
BCX (1;2), (3), (4), (5), (6) 

Edges 
IVEC (12), (13;23), (14;24), (34), (15;25), (36) 
BC (12), (13;23), (14;24), (34), (15;25), (36) 
BCX (12), (13;23), (14;24), (34), (15;25), (36) 

Globalindex 

1.9841 
17.8770 

2.3015 
29.7550 

2.0029 
17.8860 

2.3342 
29.9440 

1.8779 
15.0120 

1.9614 
20.8680 

2.1276 
24.2640 

29357 
63.5400 

2.1995 
24,4530 

2.9439 
67.6800 
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G8 

6 

6~ 

6 

G1o 

3 
GI( 

G~z 

IVEC 
BC 
BCX 

IVEC 
BC 

BCX 

IVEC 
BC 
BCX 

IVEC 
BC 

BCX 

IVEC 
BC 
BCX 

IVEC 
BC 

BCX 

IVEC 
BCX 
BCX 

IVEC 
BC 

BCX 

IVEC 
BC 
BCX 

IVEC 
BC 

BCX 

Table 1 (continued) 

Vertices 

(1;2;3), (4), (5), (6) 
(1;2;3), (4), (5), (6) 
(1;2;3), (4), (5), (6) 

Edges 

(12;13;23), (14;24;34), (15;25;35), (46) 
(12;13;23), (14;24;34), (15;25;35), (46) 
(12;13;23), (14;24;34), (15;25;35), (46) 

Vertices 

(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 

Edges 

(12), (13), (23), (15), (14), (24), (35), (26) 
(12), (13), (23), (14), (24), (15), (26), (35) 
(12), (13), (23), (14), (15), (24), (26), (35) 

Vertices 

(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 

Edges 

(12), (13), (14), (23), (15), (25), (34), (26), (46) 
(12), (13), (23), (14), (15), (25), (34), (26), (46) 
(12), (13), (23), (14), (15), (25), (26), (34), (46) 

Vertices 

(1), (2;3), (4;5), (6) 
(1), (2;3), (4;5), (6) 
(1), (2;3), (4;5), (6) 

Edges 

(12;13), (23), (14;15), (24;35), (26;36), (45) 
(12;13), (23), (14;15), (24;35), (26;36), (45) 
(12;13), (23), (14;15), (24;35), (26;36), (45) 

Verfices 

(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 

Edges 

(12), (13;23), (14;24), (15;25), (34), (36), (56) 
(12), (13;23), (14;24), (34), (15;25), (36), (56) 
(12), (13;23), (14;24), (34), (15;25), (36), (56) 

2.2088 
27.6240 

3.1393 
85.8600 

2.1592 
21.2730 

2.7449 
50.0600 

2.2939 
24.1200 

2.9467 
59.7600 

2.2913 
27.3000 

3.1439 
77.5400 

2.3048 
27.3000 

3.1531 
77.7200 
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Global centricity indices ( for  So and $1 fragments)are also included in 
table 1. The global values increase with graph centricity and centrocomplexity, 
respectively. A more detailed analysis of such global parameters will be made in 
future work. 

In table 2, the ordering of So and St subgraphs in G~3 is listed. One can see 
the different manner of ordering induced by the centricity BC operator versus the 
complexity BCX operator. However, since the line derivatives tend to focalize the 
graph towards the point of highest degree as n increases, the ordering given by the 
BC operator approaches that of the BCX operator. Thus, the ordering by BC will 
be reliable just for subgraphs below three edges. 

Table 2 

Centricities in 2,2-dimethylhexane (G13). 

G13 

S o NBC(So, end 2) S o NBCX(So, end 2) 

3 1.00000 2 1.00000 
4 0.83085 3 0.35634 
2 0.65856 4 0.28170 
5 0.44023 5 0.24653 
1 0.34160 1 0.11511 
7 0.34160 7 0.11511 
8 0.34160 8 0.11511 
6 0.25250 6 0.06763 

S 1 NBC(S 1, end 2) S 1 NBCX(S l, end 2) 

3,4 1.00000 2,3 1.00000 
2,3 0.72702 1,2 0.61859 
4,5 0.40441 2,7 0.61859 
1,2 0.38676 2,8 0.61859 
2,7 0.38676 3,4 0.27214 
2,8 0.38676 4,5 0.19538 
5,6 0.20115 5,6 0.05276 

In the following, we present the ordering of $3 fragments in a cube (G14, 

table 3), in terms of NI(S3r, end 3), Note that the cube is a $2 transitive graph. 
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Table 3 

Centricities of S 3 fragments in a cube. 

G14 

BC(S3r, end 3): 
BC(S3, end 3): 

Z 3 

g ~" 

1.00000 
1.00000 

,, 'I 

L/ 
0.41034 
0.34446 

0.31845 
0.34100 

Table 4 

Centricities in Petersen's graph. 

G15 

S2 
NBCX(S2j, end 3) 

So 
NBCX(Soj, end 3) 

Sx 
NBCX(S U, end 3) 

g 

t 6 

: (16-19) , (15-58) , (23-34) 
: 1.0000000 , 0.8538732 , 0.5527499 

: (1,6) , (7) , (9,10) , (4,5) , (8) , (2,3) 
: 1.0000000, 0.6724197, 0.6291951 ,0.6282629 0.6185022 0.6175821 

: (16) , (19;610), (15;46) , (79;710), (78) , (210;39) 
: 1,0000000, 0.8598616, 0.8592246,0.5944589, 0.5866737, 0.5697770 

(48;58) , (25;34) , (23) 
0.5697693, 0.5693560, 0.5617945 

T h e  order ing  o f  So-$2 f r agmen t s  in the weigh ted  P e t e r s e n ' s  g raph  G15 
( table  4) in t e rms  o f  NBCX(Smj, end 3) shows the abi l i ty o f  our  a lgor i thm to find 

the g raph  orbits.  
No te  that  the unwe igh ted  P e t e r s e n ' s  g raph  is $2 t ransi t ive  and its d i a m e t e r  

equals  two.  
The  M O L C E N  a lgor i thm was i m p l e m e n t e d  on a T U R B O - P A S C A L ,  T O P I N D ,  

ava i l ab le  upon  request .  The  m o l e c u l a r  s t ructures  were  input  in a d ic t ionary  fo rm 

and the mat r i ces  are man ipu l a t ed  by  us ing  the heap.  
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6. Conclusions 

The MOLCEN algorithm, developed on the basis of the IVEC concept [9] 
and the iterative line derivatives of graphs, enables one to evaluate the centricity 
and centocomplexity of subgraphs of various size. It provides reliable centric ordering 
of subgraphs, which could be useful finding graph orbits. Global parameters of 
centricity could characterize the molecular graphs in QSAR/QSPR studies. 
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